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Abstract
Artificial intelligence in the medical field is becom-
ing in great demand recent years, but there are still
many obstacles to conquer. Applied semantics ex-
traction is one of the key technologies to study. An
electronic medical record (EMR) in hospital is the
detail record of doctor’s diagnosis and treatment,
where rich medical knowledge lies. However, con-
sidering of the complexity of the clinical process,
the diversity of doctors’ professional competence
level, and even the errors in electronic system, it is
difficult to extract knowledge directly from EMR.
When building a medical AI application system, it
is the common way to customize rules of data ex-
traction based on different target tasks, then to la-
bel data by medical experts, and the premise of the
application system is finally achieved. These steps
are costly and have limited versatility. In this pa-
per, we propose a highly efficient method to per-
form semantics extraction and analytics with most
labor free in medical AI tasks, named as medi-
cal knowledge embedding (MKE). Concept graph
as the form of medical knowledge is constructed
from EMR, and concept embedding representation
is generated by graph neural network (GNN) algo-
rithm, which can be used in other medical applied
tasks. Due to the limitation on public medical data,
a medical named entity recognition (NER) task is
carried on to test and verify this concept representa-
tion. The experiment shows that this work can out-
perform classic BILSTM+CRF and the best model
in the medical NER track of CCKS 2019.

1 Introduction
In recent years, artificial intelligence (AI) has already been
developed in the medical area for decades, otherwise there
are lots of difficulties to conquer. The rare access to large
scale valuable clinical data is one barrier because of privacy
and ethical issues. Besides, the labeling cost of medical data
is another obstacle due to high price of medical experts. All
these difficulties restrict the development of medical AI to a
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great extent. Applied semantics extraction and analytics from
clinical electronic medical record (EMR) are play a key role
to improve current situation.

EMR in hospital is the detail record of doctor’s diagnosis
and treatment, where rich medical knowledge lies. However,
the allowance to access EMR must be granted from ethics
committee in hospital to use these data. So, fully utilizing
publicly released medical knowledge bases becomes second
choice to improve medical AI. Now more and more knowl-
edge bases appear, such as the systematized Nomenclature of
Human and Veterinary Medicine Clinical Terms (SNOMED-
CT)1, Unified Medical Language System (UMLS)2. These
knowledge bases have played important roles in the field
of medical data analysis and medical artificial intelligence.
Nevertheless, they contain more common sense than profes-
sional knowledge in a vertical field of medicine, such as tu-
mor or heart failure, besides the cost of construction is very
extremely high.

Even when clinical EMR is accessible, it is difficult to ex-
tract knowledge directly, considering of the complexity of the
clinical process, the diversity of doctors’ professional com-
petence level, and even the errors of electronic system. For
building a medical AI application system, it is the usual way
to customize rules of data extraction based on different target
tasks, then to label data by medical experts, and the premise
of the application system is finally achieved. These steps are
costly and have limited versatility.

This paper proposes a method to perform semantics extrac-
tion and analytics in medical AI tasks with high efficiency,
named as medical knowledge embedding (MKE). Concept
graph as the form of medical knowledge is constructed from
EMR, and medical concept embedding representation is gen-
erated by graph neural network (GNN) algorithm, which can
be used in other medical applied tasks. A medical named en-
tity recognition task is carried on used the concept representa-
tion, and the experiment shows that the semantics embedding
of concept graph from EMR can enrich prior information to
improve other natural language processing tasks in the medi-
cal field.

1https : //www.snomed.org/
2https : //www.nlm.nih.gov/research/umls/index.html



2 Related Work

EMR has accumulated a large amount of real medical records
in hospital, which is bound to attract the interest and attention
of researchers in the industry. Dalta et al. developed an au-
tomatic clinical diagnosis system based on mimic-iii medical
record dataset [Datla et al., 2017]. Goodwin et al. used this
dataset to study the knowledge embedding in EMR informa-
tion extraction [Goodwin and Harabagiu, 2016]. Harabagiu
et al. studied EMR information extraction and query expan-
sion on i2b2 dataset [Goodwin and Harabagiu, 2013]. And
a clinical support system is developed by Ling [Ling, 2017].
Kang et al. used UMLS to study the concept mapping of
EMR terms [Kang et al., 2009]. Khare et al. proposed a
method to build a correlation by capturing the assertions re-
lated to medical concepts and design a calculation method to
predict the indications of new drugs by using the drug labels,
which is derived from PubMed and relationship among drug,
disease and treatment annotated in LabeledIn [Khare et al.,
2014]. Medical knowledge from EMR is a very effective en-
hancer to medical-applied AI task as above.

Aside from word embedding, which learns word represen-
tation via corpus only, graph embedding enhances the repre-
sentation ability by capturing more relevant information from
graph. DeepWalk performs random walks on the graph on
the basis of edge weights DeepWalk [Perozzi et al., 2014].
From the sampled sequence, DeepWalk learns the embed-
ding through local predictions on nodes’ neighborhood. Fur-
thermore, LINE learns the embedding based on breadth-first
search schemes and reserves both the first-order and second-
order proximities [Tang et al., 2015]. Node2vec extends
DeepWalk by tuning the weights used in random walks to
balance homophily and structural equivalence [Grover and
Leskovec, 2016]. For all these methods, graph embedding
exploits rich information from graph to enhance knowledge
representations, which could benefit downstream NLP tasks.

To date, along with other representation techniques, graph
embedding methods has provide a variety of real world med-
ical applications. For general representation learning, Wu et
al. proposed a graph-based, hierarchical medical entity em-
bedding framework Med2vec to learn representation via EHR
data [Wu et al., 2019]. For applications related to link pre-
dictions, by performing study on large-scale real-world EMR
data, Li et al. introduced a PrTransX algorithm to learn the
embedding vectors of a probabilistic knowledge graph (KG)
and demonstrate its performance on predictions of disease re-
lations [Li et al., 2020]. Wang et al. proposed a novel frame-
work SMR to provide safe medicine recommendations by
constructing a heterogeneous graph (Wang et al. 2017)[12].
Furthermore, Celebi et al. proved that the knowledge embed-
dings are significant predictors for inferring new drug-drug
interactions [Celebi et al., 2019]. For entity recognition, Sun
et al. built a graph-based model to detect suspicious claims
with inappropriate diagnose medications by integrating the
dictionary-based features with the embeddings [Sun et al.,
2020]. Among different graph embedding methods, Mao &
Fung applied graph convolutional networks (GCN) to mea-
sure semantic relatedness between UMLS concepts [Mao
and Fung, 2020]. Their graph-based methodology outper-

forms corpus-based word embeddings.

3 Methods
The schema of our work firstly builds the concept graph from
real EMRs, and then generates embedding representation via
GCN. The embedding representation as MKE can be used to
improve other NLP tasks. The procedure to extract MKE is
illustrated below.

3.1 Concept Graph
The concept graph is constructed through dozens of applica-
tion projects for hospitals scattered all over China which was
done by our works in the past, and these projects obtain ap-
proval by the ethics board of all hospitals. The graph consists
of relevant edges among medical concepts, which include
normalized names of symptom, diagnosis, drug, surgery and
laboratory test from EMR (Electronic Medical Record) in
hospital. The procedure is described as below.

First, the co-occurrence between medical concepts is de-
rived from every EMR. EMR usually consists of semi-
structured data such as table, image, free text, etc. The names
of diagnosis, drug, surgery, abnormal laboratory test in the
graph can be found in specific fields of structured table, such
as tables of discharge record, drug order, surgery record, and
laboratory test record. The symptom names must yet be
extracted from chief complaint or history of present illness
through text structure tools developed by previous works,
which were developed in terms of the standard information
extraction algorithm done with entity and relationship recog-
nition, customization of output medical logic using entity and
relationship.

Second, the concept names directly extracted from EMR
are expressed with personalized manners, which causes diffi-
culty in identify concept from different EMR in hospital, so
the normalization is carried on after the co-occurrence extrac-
tion. The diagnosis names are normalized to ICD103, which
is a diagnostic coding standard called International Classi-
fication of Diseases. The surgery names are normalized to
code of procedure classification from ICD-9-CM-34 for com-
patibility with historical clinical settings. The drug names are
normalized to ATC5. The abnormal laboratory test names are
normalized to code of LOINC6. Nevertheless, lack of public
standards, the symptom names are normalized to a schema
based on previous clinical knowledge according to symp-
tomatic anatomic site and types of symptom. Considering
co-occurrence as an edge, the frequency can be counted after
normalization.

Finally, the graph needs be pruned due to the inadequate
data quality of EMR, such as mismatch between tables of
EMR and error in normalization of concept. Besides, there
are odd events in the process of clinical diagnosis and treat-
ment. A statistical method is carried out to quantify the confi-
dence of edge called OR (odds ratio). The OR [Schechtman,

3https : //icd.who.int/browse10/2016/en
4https : //www.cdc.gov/nchs/icd/icd9cm.htm
5https : //www.who.int/tools/atc − ddd − toolkit/atc −

classification
6https : //loinc.org/



Category SYM DIA DRU SUR LAB

Count 7563 9052 1381 423 1123

Table 1: Concept number of different categories

Edge between concepts Count

DIA DIA 105740
DIA SYM 49417
DIA DRU 220540
DIA SUR 16491
DIA LAB 183178
SYM SYM 63333
SYM DRU 20853
DRU DRU 36811

Table 2: Edge number between concepts

2002] is a measure of association between exposure and out-
come. It represents the odds when an outcome occurs given a
particular exposure, compared to the odds the outcome occur-
ring in the absence of that exposure. OR>1 indicates positive
correlation, otherwise OR<1 indicates negative correlation.
The bigger OR is, the more strength of relevance between ex-
posure and outcome is. In this scenario, the nodes on both
sides of an edge in concept graph can be considered as ex-
posure and outcome. Besides, the OR is the weight of the
edge. Thus the graph is pruned followed by two criteria: OR
is bigger than 1.5; frequency of co-occurrence is bigger than
10.

Following above procedure, the concept graph is con-
structed, which consists of 19542 nodes and 696363 edges.
An example of sub-graph is in Figure 1 centering by “冠状
病毒感染” (coronavirus infections). The statistics are shown
in Table 1 and Table 2. In these tables, SYM is denoted as
symptom, DIA as diagnosis, DRU as drug, SUR as surgery,
and LAB as laboratory test. Edges besides eight types in Ta-
ble 2 are ignored as lack of confidence.

3.2 Concept Embedding
With the concept graph constructed above, Graph Convolu-
tional Networks could be pre-trained to generate entity em-
beddings [Kipf and Welling, 2017]. Graph convolutional net-
work (GCNs) are variants of graph neural network (GNNs).
Gori et al. firstly proposed the architecture of Graph Neural
Networks and Scarselli et al. expounded GNNs with more
details [Gori et al., 2005; Scarselli et al., 2009]. They use
recurrent neural networks to propagate neighbor information
until a stable state is reached. Then representation of the tar-
get node could be learned through propagation process.

Inspired by CNNs’ great success in computer vision, many
approaches are dedicated to incorporate convolution methods
into GNNs. Kipf & Welling proposed the definition of Graph
Convolutional Network, which performs convolution directly
on graph structure [Kipf and Welling, 2017]. To explain
GCNs, we assume to have a graph of N nodes. Each node
has D features. The feature matrix could mark as H with
N×D dimensions. Relationship between each node can be

Figure 1: An example subgraph of the concept graph

Figure 2: Graph structure inside each layer of GCN

represented as an adjacency matrix A of N×N .
The layer-wise propagation rule will be:

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2H lW l) (1)

In the above formula, Ã = A + I and I is the identity ma-
trix to avoid empty value in diagonal of adjacency matrix. H
contains the features for each layer. D̃ is the degree matrix
of Ã, which helps to maintain original distribution of H . W l

is a layer-specific trainable weight matrix. σ is the non-linear
activation function.

The formula explains the basic transmission mechanism
for GCNs. For a specific task, more details could be explained
by Figure 2 from Kipf & Welling’s paper [Kipf and Welling,
2017], C is the input graph and Xi denotes the feature in C.
Finally, Xi will change to be Zi through propagation. The
relationship between each node is shared for each layer in
GCNs.

Assuming we have two-layer GCN and we use ReLU and
softmax for activation functions. Pre-processing step for ad-
jacency matrix A:

Â = D̃−
1
2 ÃD̃−

1
2 (2)

Then the forward propagation will be:

Z = f(X,A) = softmax(ÂReLU(ÂXW (0))W (1)) (3)



For nodes that have labels, denoted as YL, we could calcu-
late the cross entropy:

L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf (4)

Then the model could be trained by this node classifica-
tion task. Link predictions and other tasks will be similar
by adjusting loss functions. With the trained GCNs, we could
then perform feature extraction to generate node embeddings,
which is MKE as wanted.

4 Experiments
To verify the effect of the graph embedding, the public re-
leased datasets from real world Chinese EMR is our first
choice for considering the privacy of EMR. So a natural lan-
guage processing task is performed using the open source
dataset from the track7 , on named entity recognition for Chi-
nese EMR in the 12th China Conference on Knowledge Graph
and Semantic Computing (CCKS).

4.1 Dataset
The dataset is provided in the medical named entity recogni-
tion track of CCKS. A doctor team was organized to produce
and annotate the dataset based on clinical experience. Train-
ing set consists of 600 documnets and testing set consists of
400 documents, which derived from history of present illness.
The annotated data were de-identified and released to evalua-
tion participants with data use agreements.

The entity type of this track focuses on three main cate-
gories: symptom, drug, and surgery from history of present
illness. Since most of the symptoms appeared in Chinese
EMR are structured, this task further subdivided the symp-
toms into three sub categories: the anatomical site (the sub-
ject of the symptoms), the symptom description (the descrip-
tion of the symptoms), and the independent symptoms. Fi-
nally, the predefined categories of this task are limited to the
following five categories:

• Anatomical Site: The subject of a symptom which refers
to a structural unit composed of a variety of tissues that
perform certain function, such as “腹部” (abdomen).

• Symptom Description: The description of a symptom
which refers to the patient’s own experience and feel-
ing of abnormal physiological function. It needs to be
combined with an anatomical part to express a complete
symptom, such as “不适” (discomfort), combined with
“腹部” (abdomen) to output “腹部不适” (abdominal
discomfort).

• Independent Symptom: a complete symptom which can
be output independently, such as “眩晕” (dizziness).

• Drug: A chemical substance used to treat, prevent dis-
eases, or promote health.

• Surgery: The treatment of the patient’s body with a med-
ical device such as resection, suturing.

The statistics of the annotated dataset are shown in the fol-
lowing Table 3.

7https : //biendata.xyz/competition/CCKS2018 1/

Dataset Training Set Testing Set

Anatomical Sites 7838 6339
Symptom Descriptions 2066 918
Independent Symptoms 3055 1327
Drugs 1005 813
Surgeries 1116 735
Total 15080 10132

Table 3: The statistics of annotated dataset

Figure 3: Lattice LSTM structure

4.2 Model Architectures
Named entity recognition (NER) has received constant atten-
tion for application and academic research over the recent
years as a fundamental task in information extraction. Tra-
ditionally, NER has been solved as a sequence labeling prob-
lem [Liu et al., 2017; Lample et al., 2016; Long et al., 2018;
Liu et al., 2019], where entity boundary and category labels
are jointly predicted. The current state-of-the-art for English
NER has been achieved by using BILSTM+CRF models [Liu
et al., 2017; Lample et al., 2016]. Different from English,
word segmentation is a basic task in Chinese, and the poten-
tial issue of error propagation can be suffered. So character-
based NER is becoming more and more popular. One draw-
back of character-based NER, however, is that explicit word
and word sequence information is not fully exploited, which
can be potentially useful.

Inspired from lattice LSTM [Zhang and Yang, 2018],
MKE is integrated into a character-based BILSTM+CRF
model by representing concept names from the sentence
using a lattice structure LSTM, which named as MKE-
BILSTM+CRF. As showing in Figure 3, for example, a word-
character lattice is constructed by matching a sentence with
nodes from the concept graph, and the synonym is extended
for the concept node. The red circle as “糖尿病” (diabetes) in
the model is the medical concept word in the sentence, which
is connected with the corresponding characters in the main
model.

Formally, an input sentence S can be denoted as a sequence
as (c1, c2, ..., cn), in which cj is the j-th character in S and
can be represented as a D-dimensional vector Xc

j from a pre-
train lookup table:

Xc
i = ec(token(Cc

j,len(W ))) (5)

In our experiment, MKE is integrated into a basic recur-
rent structure, so the final computation of Xc

j considers the



Figure 4: Comparison of named entity recognition loss functions

P R F1

BILSTM+CRF 88.64% 88.63% 87.93%
Best in CCKS 2018 - - 89.26%
MKE-BILSTM+CRF 91.22% 92.03% 91.68%

Table 4: Evaluation of three models

medical concept is represented as Xc′

j :

Xc′

j = [Xc
j , e

t(token(Cc
j,m))] (6)

where token(Cc
j,len(W )) denotes the concept word from

character cj to cm, and m − j + 1 denotes the number of
characters in the entity, et is the graph embedding lookup ta-
ble that we have been trained. For every character contained
in this concept word, the concept embedding is concatenated
to char embedding.

4.3 Experimental Settings
The experiments run on a Tesla P40 (24 GB). Training is per-
formed with batch size 32, dropout probability 0.1, learning
rate η = 1e−4 and training epochs 5. The model is trained
both using Adam’s Optimizer in a stochastic gradient descent
fashion. The medical graph neural network embedding di-
mension is 200.

4.4 Experimental Results
A comparison of training loss lies in Figure 4, which is loss on
different iterations. The baseline is a classic character-based
BILSTM+CRF model using a pre-trained character embed-
dings, which shows that training loss of our method is sub-
stantially less compared baseline as the training loss value of
MKE-BILSTM+CRF is smoother and stabilizes faster. So the
MKE enhances the model to learn quickly, which means less
annotated corpus.

According to the track of CCKS, the strict evaluation met-
rics is employed to measure the performance as below.

The output of NER is denoted as S = s1, s2, ..., sm and
the set of the manual annotation (Gold Standard) is denoted
as G = g1, g2, ..., gm. The element of the collection is an en-
tity mention, which is denoted as a quaternion < d, b, e, c >,
where d is the document, b and e correspond to the starting

and ending position of the entity mention appeared in the
document d, respectively. c indicates pre-defined category
that the entity mention belongs to. The evaluation is defined
si ∈ S is strictly equivalent to gi ∈ G, if and only if:

si.d = gi.d, si.b = gi.b, si.e = gi.e, si.c = gi.c (7)

Ps =
S ∩s G
|S|

, Rs =
S ∩s G
|G|

, F1s =
2 ∗ Ps + ∗
Ps +Rs

(8)

Evaluations are listed in Table 3 for three models. The
first line is a baseline model as BILSTM+CRF, and the F1
reach to 87.93%. MKE-BILSTM+CRF with MKE as priori
knowledge gives a 91.68% F1-score based on the same ex-
perimental settings and inputs, which is higher compared to
the baseline, improved by 4%.

Furthermore, the best result over more than 100 teams on
the track lies in the second line of the table, whose F1 is
89.26% [Zhang et al., 2019]. In this model, a large amount
of manually defined features are adopted in, including part-
of-speech tagging, pinyin characteristics, roots, radicals and
dictionary features, etc. These complex feature engineer-
ing overcomes all other complicated models, such as hybrid
model and representation learning method. On the other con-
trary, MKE-BILSTM+CRF only includes pre-trained con-
cept embedding based classic BILSTM+CRF to raise F1 to
91.68% with most labor free.

5 Conclusions
In this paper, a method on medical concept embedding is pro-
posed by automatically building a large-scale concept graph
from EMRs and embedding medical semantics information
through graph neural network, named as medical knowledge
embedding (MKE), and the whole procedure is almost man-
ual annotation free. Because of the limitation on public med-
ical AI resources, the paper uses a medical named entity
recognition task on text from history of present illness on
CCKS is carried on to demonstrate the value of MKE as prior
knowledge. MKE can definitely be used in other medical
tasks to enrich semantic information.

In the future, to improve MKE, the scale expansion is one
aspect for covering more types of hospitals and patients from
more regions. On the other way, a special MKE is perhaps a
better way to improve tasks for different diseases.
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